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Absiract. The conventional way of developing a momentum balance equation by generating the
first-order moment (with the momentum k as the moment operator) from the Boltzmann transport
equation relies on the fact that the distribution function f(k) approaches zero rapidly enough
that the integral f V(k) f(k) &k is negligible. This is not valid for an energy band (e.g. a
superlattice miniband) whose width (in at least one direction of the k-space) is comparable with
kpT. (T is the electron ternperature). It is demonstrated that by choosing the moment operator
to be the velocity function (k) = Ve(k) a compact morent equation, which is valid for a
general energy band and represents an effective momentum balance of the carrier system, can
be derived for the distribution function (k) which is a continuous functien of k in the periodic
zone scheme. The effective momentum balance equation and the energy balance equation thus
obtzined share the same formal expressions as the acceleration and energy-balance equations
in Lei’s non-parabolic method, These equations, with the distribution function suggested by
Huang and Wu, are applied to the discussion of high electric field transport of electrons in non-
parabolic Kane bands and superlattice minibands. The results are compared with the predictions
from Lei’s non-parabolic method and from a carrier temperature model.

1. Introduction

The Lei-Ting [1] balance-equation approach to hot-electron transport in semiconductors,
which was proposed 10 years ago, has been successfully applied to a variety of transport
problems in different types of system. This theory is based on the separation of the centre
of mass of the system from the relative motion of electrons in the presence of the electric
field. Such a separation is valid only for electrons moving in a parabolic band or for systems
which can be described by a constant effective mass. Recent interest in a semi-analytical and
realistic theory capable of dealing with superlattice miniband transport {2] has stimulated
many investigations on extending the Lei-Ting balance-equation method to general energy
band structures. Several extensions have been proposed recently with different results,

Magnus e al [3] suggested that the exact set of the original Lei-Ting balance equations
as given in [1] can still be used to describe transport in a general energy band as long as the
true (rather than the parabolic) energy dispersion relation is taken into account in the electron
density—density correlation function. They have applied these equations to the investigation
of the electron transport in GaAs/AlGaAs heterojunctions with non-parabolicity (Kane type)
included [4].
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The present author [5] extended the Lei-Ting theory to an arbitrary energy band. His
non-parabolic method describes the drifting Bloch electrons under the influence of a uniform
electric field by the use of two parameters: the centre-of-mass momentum and the electron
temperature. The balance equations comprise an equation of motion of the centre of mass,
a mass-variable single particle under the influence of the electric field, and an equation of
energy balance between the power supplied by the electric field and energy loss rate of the
electron system. These equations have been applied to superlattice miniband transport [6],
yielding an Esaki—Tsu negative differential conductivity (NDC), reproducing the experimental
peak drift velocity vp and the threshold electric field as functions of the miniband width
[7}, and accounting for the low-temperature saturation of vp [8]. The predictions of this
non-parabolic method have also been confirmed by a recent calculation based on the three-
dimensional Boltzmann equation [9].

Recently, Huang and Wa (HW) [10] proposed a set of balance equations for electron
transport in a general energy band under the influence of an electric field, in which the
momentum and energy losses are to be evaluated with a distribution function which is
obtained by maximizing the system entropy, subject to a given total number of electrons
and a given total energy and, in addition, subject to a restricted condition that the average
drift velocity is also prescribed. Although these equations are not capable of reproducing the
well established Esaki—Tsu negative differential mobility for superlattice miniband transport
{11], the distribution function produced by HW is very attractive and plausible.

In this paper we point out that, from the viewpoint of the Boltzmann equation, the
original Lei-Ting momentum balance equation (i.e. the momentum balance suggested by
Magnus et af [3]) and the momentum balance equation suggested by Hw [10] are generally
not valid for narrow energy bands. A balance equation, which is valid for a general energy
band and represents an effective momentum balance, can be derived by taking an appropriate
‘moment’ from the Boltzmann equation with a prescribed distribution function. The effective
momentum and energy balance equations thus obtained share the same formal expressions
as the acceleration and energy balance equations in Lei’s non-parabolic method, but with the
original ‘distribution function’ replaced by the prescribed distribution function. The derived
equations with the distribution function suggested by HW [10] are applied to the discussion of
hot-carrier transport in non-parabolic Kane bands and in superlattice minibands. The results
are compared with those from Lei’s non-parabolic method and from a carrier temperature
model.

This paper is organjzed as follows. For the readers’ convenience and to facilitate
comparison we rewrite the major equations and formuiae from Lei’s non-parabolic method
and from the paper of HW in sections 2 and 3 respectively. In section 4 we discuss in
detail the derivation of balance equations from the Boltzmann equation for a general energy
band. In section 5 we propose an electron temperature (ET) model for a general energy
band system. These balance equation theories and models are applied to non-parabolic
Kane bands in section 6, and to superlattice minibands in section 7, before we conclude in
section 8.

2. Lei’s non-parabolic method

Lei’s non-parabolic method deals with many interacting Bloch electrons which are drifting
under the influence of a uniform electric field. It assumes that strong intercarrier couplings
promote rapid thermalization of electrons in a reference frame in which the total momentum
of carriers vanishes. This enables us to describe these drifting Bloch electrons under the



Balance equations for electron transport 9191

influence of a uniform electric field E by the use of two parameters, namely the centre-of-
mass momentum Fy = Npy (N is the total number of the electrons) and the ET .. They
are included in the initial density matrix, which represents a thermoequilibrium-type state
and is thought to be close to the final transport state that we are trying to find. Balance
equations are derived by evaluating the statistical averages of the rates of changes in the
centre-of-mass velocity and the electron energy operators. To leading order of the scaftering
potentials this yields the following acceleration and energy balance equations for the steady
transport state:

eBE-K+A=0 - 4}
eE-vg— W =0. (@)

Here A = A; + A, is the frictional acceleration due to impurities (A;) and phonon-s (Ap),
and W is the electron energy loss rate (per carrier) due to phonon-s. The centre-of-mass
velocity or the average drift velocity vy of the carriers, is given by

2
va =5 D vE)f(e(k — pa)) 3)
k

where v(k) = Ve(k) is the velocity function, and (&) = 1/[exp(e — u}/ T.+ 1] stands for
the Fermi function at the temperature T, with u the chemical potential to be determined by
the total number of carriers: N =23, f(£(k)). Equation (1) is the equation of motion of
the centre of mass, which is a mass-variable single particle with an inverse effective mass
tensor KC/N, given by

2
== ij VVe(k) f(s(k — pa))- 4

The impurity-induced frictional acceleration A4;, the phonon—induced frictional acceleration
Ay, and the energy transfer rate W from the electron system to the phonon system have the
following form [5]:

1= 28 S a@Plg(h, OFfotk +0) —o(BleCe + @)
k.q
— e[S ek — pa)) — Fle(k + g —pa))] )
4 .
A= F” kZ |# (g, MI*|g (k. @) vk + @) — vik)le(k + g) — e(k) + Q)
2.
x {n(Qq /TS (e(k — pa)) — fle(k + g —pa))]
— flete — pO)I — fleCk + q— PO} ©)
W= %” M (g, WP lgk, D) Qudletk + ) — e(k) + Qaal(n(Qar/T).
k.q,\
x [fetk —pg)) — fe(k + ¢ — Pa))l
— f(e(k — a1 — f(eCk + g — )} @)
Here

i(q) = u(g)/e(q, e(k — py) — elk + @ — pa)) @
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and

M(g, }) = M(g, M)/e(g, etk — pg) — e(k + g — pa)) (9)

are the dynamically screened impurity scattering potential and the dynamically screened
electron—phonon matrix element, x#(g) is the bare impurity potential and M{q, &) is the
(unscreened) coupling matrix element between the electron and Ath branch phonon in the
plane-wave representation. e(qg, @) is the RPA dielectric function of the electron system,
So far, in most numerical investigations, only the static screening approximation has been
used: i(g) ~ u(g)/e(q, 0) and M(q, 1) ~ M(qg, 1)/e(g, 0).

The acceleration balance equation (1) and the energy balance equation (2) constitute
the basis of the method for steady-state transport. These equations reduce to the original
Lei-Ting balance equations in the parabolic limit.

3. Huapg-Whu distribotion function

Recently, EW [10] proposed a set of balance equations for electron transport in a general
energy band under the influence of an electric field. It takes the following form in the
stationary conduction:

NeFE = momentum loss by seattering (with phonon-s and impurities) (10)

NeE - vy = energy loss by scattering (with phonon-s). an
Here the momentum loss and energy loss are calculated with a distribution function
F(k) = 1/lexp{Ble(k) — pv - Ve(k) — plz} + 13 (12)

which is obtained by HW [10] as a distribution function of the electron gas by maximizing
its entropy, subject to a given total number of electrons and a given total energy and, in
addition, subject to the restricted condition that the average drift velocity is also prescribed.
The drift velocity vy is given by

2 R
v = > o(k) (k) (13)
k

and the parameters 8, 4 and p, are determined by the total number of carriers given by

N=2) fik) (14)
k

together with the momentum and energy balance equations (10} and (11). I shall refer to
the function f,(k) (equation (12)) as the HW distribution function.

As has been pointed out by the present author [11], the distribution function obtained in
this way apparently depends on the prescribed condition that one chooses. So far we have no
specific reason why one should maximize the entropy within the constant-velocity surface
of the phase space. For instance, one can maximize the entropy subject to a prescribed
average momentum instead of average velocity. This gives a distribution function of the
form

fo(B) = 1/lexp{Ble(k) — v, - p(k) — ul} + 11 (15)
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where 8, g and v, are parameters, and p(k) stands for the momentum of an electron
in the k-state, which is a periodic function of k& and equals % within the Brillouin zone
(BZ). We can also express the momentum and energy balance equations (10) and (11) and
equations (13) and (14) in terms of the distribution function f,(k). The resultant set of
balance equations is in fact somewhat similar to those suggested by Magnus er af [3]. The
main difference ig that in the latter case vy is taken to be equal to o, rather than related to
v, by equation (13).

Although equations (10) and (11) themselves leave some ambiguity on how to evaluate
the the ‘momentum loss by scattering’, the reasonable way of calculating this quantity should
be by means of the Fermi golden rule together with the electron distribution or, equivalently,
the collision integral term of the Boltzmann equation. In this way the ‘momentum loss by
scaftering’ turns out to be —N f given by equation (21) of the next section. Unfortunately,
equations thus obtained are unable to reproduce the well established Esaki-Tsu negative
differential mobility for superlattice miniband transport {11}, irrespective of which of the
functions f, (k) or f,(k) is used in calculating the momentum and energy losses. Therefore,
these equations cannot be a good description for high-field transport at least for this type of
strongly non-parabolic band. It should be noted, however, that this conclusion is not related
to the form of the distribution function used.

“In order to see what is missed in these equations we shall, in the next section, investigate
the moment equations from the Boltzmanne transport equation for a general energy band.

4. Montent equations of the Boltzmann equation for a general energy band

Consider electrons moving within a single energy band. The electron Bloch state can be
described by the lattice wavevector k& within a Brillouin zone BZ. In the periodic zone
scheme, k and k+ G (G is a reciprocal-lattice vector) represent the same electron state and
the energy dispersion £(k) is a periodic function:

ek) = ek +G). ' (16)

The steady-state Boltzmann equation for a spatially homogeneous system under the
influence of a uniform electric field is written as
i
eE.V (k) = (—f) . : an
at /.
Here f(k) is the distribution function and (3f/3f). stands for the collision term.
A general moment equation is obtained by multiplying equation (17) by an arbitrary
scalar or vector function g(k) (moment operator) and summing over all the electron states
or integrating over k in a BZ to give

@k  eE _ af &k
B [ Vator®y - _cé s gty == | (a)cg(k)m s)

The second term on the left-hand side is a closed area integration over the boundary surface
Sgz of the BZ.
Taking g(k) = k, we have

$r  eE _ ar\ . &
e}«;fmf(k)m - -.ﬁuds kf(k) = mez (ﬁ)ckﬁ' (19)
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The first term on the left-hand side gives

Ef f(k)ﬁ—NE 20
e . a3 = Vel (20)

The right-hand side is exactly the momentum loss rate of the electron system due to impurity
and phonon scatterings, —F = —N f, which can be written in the form

= ENF—' > (@) Plgk, @)Pip(k + g) — p(E)S(e(h + @) — skDIf (k) ~ Flk + @]
kg

4
2 2 1M gk, )Pk + 9 — pCkNBla(h + @) — o(8) + i)
k.q.A

x {n(Qq/Df (k) — fk+ @] - F(R)1 - fk+ @)} 2D

In the case of a parabolic band for which s(k) = k*/2m and the BZ boundary is
thought to be at |k| — o0, the second term on the left-hand-side of equation (19) vanishes
owing to the exponential decay of the Fermi function at large |k|. Equation (19) reduces
to NeE = —F, ie. the momentum balance equation suggested by HW if the distribution
function £, (k) (equation (12)) is used for F(k). For a realistic wide-band system such
a conclusion may still be approximately true if the effective band widtk is much larger
than the effective temperature parameter in the distribution function. Even in this case,
however, one has to exercise caution in high-field transport, since the electron temperature
can be very high at high electric fields such that the the second term on the left-hand side
of equation (19} may not be negligible.

For a narrow band or an enpergy band which is narrow in one or two directions in
the k-space, the second term on the left-hand side of equation (19) can be as large
as the first term. Consider, for example, a superlatiice miniband given by s(k) =
(x2 + k%) /2m + (A /D[] — cos(k,d)] (d is the superlattice period and A is the miniband
width) with an electric field applied along the superlattice growth axis (z direction). In the
case of a Maxwell-Boltzmann distribution function f(k) ~ exp{—e(k)/T], the ratio of the
second term to the first term of the z component of equation (19) can be shown to be (Ip(x)
is the zeroth-order Bessel function)

exp(—A/2T) A

T (A/2T) 1 for small 5T
and thus the second term on the left-hand-side of equation (19) is not negligible. Therefore,
from the viewpoint of the moment equation of the Boltzmann equation, the original Lei-Ting
momentum balance equation (i.e. the momentum balance equation suggested by Magnus ez
al [3] and the momentum balance equation suggested by Hw [10], are generally not effective
for narrow-band systems, since the above surface integration term has been neglected in
these equations.

To obtain, from the Boltzmann equation, a compact moment equation corresponding
to a momentum balance, we choose the moment operator to be the velocity function:
g(k) = v(k) = Ve(k). In the pericdic zone scheme, the velocity function, as the energy
function e(k), is a periodic and continuous function of k. Thus, if the distribution function
f(k) is also a periodic and continuous function of &, v(k)f(k) takes the same value at
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two points separated by a reciprocal-lattice vector on opposite sides of the BZ boundary and
the closed area integration over the BZ surface in equation (18) vanishes:

ds v(k) f(k) =0. (22)

Sz

The moment equation (18) then reduces to

eE-K=—-A (23)

with
2 -
K== VVe®) k) (24)
— i
and
2 af
A=Y (5) u(k). (25)

This is exactly the acceleration balance equation (1) in Lei’s non-parabolic method. In fact,
in the presence of impurity and phonon- scatterings the frictional acceleration A is given
by the sum of A4; and Ap, having the same expressions as equations (5) and (6) (with
static screened i(q) and M(q, A), except that function f(s(k — pq)) there is replaced by
a general distribution function f(k) satisfying the above mentioned condition; it changes
continuously with changing % in the periodic zone scheme.

The requirement that the distribution function must be a continuous function of &
excludes the possibility of using f;,(k) (equation (15)) as a prescribed distribution function in
obtaining such a moment equation, since the momentum function p(k) is not continuous at
the BZ boundary. However, both the function f(e(k — ps)) and the Huang—Wu distribution
function fy(k) are such functions and can be used in this acceleration balance equation.

In the limit of a parabolic band both Lei’s non-parabolic equations (1) and (2) and the
balance equations (1) and (2) with the Hw distribution function f,(k)} reduce to the original
Lei-Ting balance equations [5]. On the other hand, comparing function f{e(k — p4)) with
the function f,(k) (equation (12)), we can see that they are equivalent at small Bq (small
py). Therefore, the balance equattons (1) and (2) with the Hw distribution function yield
exactly the same predictions as those of Lei’s non-parabolic methods for arbitrary energy
bands in the case of weak electric field transport. Different results from these two sets of
balance equations show up only for strong electric field transport in strongly non-parabolic
bands.

In investigating the streaming terms of a hydrodynamic transport model, Woolard et al
[12] pointed out that the use of the velocity function g(k) = v(k) for the moment operator
leads to a significant improvement over the use of the momentum function g(k)} = & in
the case of a non-parabolic Kane band. They arrived at this conclusion primarily on the
basis of the fact that the resultant equation with v(k) can be manipulated more easily and
a simplifying approximation can be seen more clearly, The present analysis shows that the
more fundamental reason for this is the non-zero surface integration term inherent in the
k-induced equation (19) for a realistic energy band of finite width, which is always the case.

The ambiguity left by the form of equation (10) may allow one to explain that “the
momentumn loss by scattering’ is obtained by calculating the acceleration A and multiplying
the average effective mass (K/N)™!, as defined by equations (24) and (25). Then,
equation (10} is simply identical with equation (2).
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5. Electron temperature model

The ET model [13-15] has been a simple method for investigating hot-carrier transport in the
literature, which is especially popular in the qualitative analysis of the experimental data.
Basically the ET model assumes that the only effect of a strong electric field is to raise the
ET T,. If the weak-electric-field mobility of the electron system at the latfice temperature
T is po(7), the electron mobility in a strong electric field E is given by po(7.), where the
ET T is determined by an energy balance such that the energy supplied per unit time by
the electric field equals the electron energy loss W and the latter is to be calculated using
a weak-field distribution function but replacing the lattice temperature T by 7.

This ET model can be easily extended to a general energy band, as long as equation (1)
is used to calcnlate the weak-field mobility 14(T). Note that for this purpose we need only
a small py limit for function f(k — py) or small p, limit for function f,(k); thus there is
no difference vsing Lei’s balance equations (1) and (2}, or using equations (1) and (2) with
the HW distribution function. The energy balance equation for determining T, is

edo(T)E> — W(T) = 0. (26)

Here the drift velocity is assumed to be in the same direction as the electric field such that
va = o) E.

6. Application to Kane bands

70 see the difference between Lei’s non-parabolic equations (1) and (2) and the balance
equations (1} and (2) with the AW distribution function, we first applied them to analyse
electron transport in a non-parabolic Kane band with the energy dispersion £(k) given by

k2
e(l+4asg)= e - ‘ (27)

This Kane k- model is widely used in the literature to describe the non-parabolicity of the
electron energy dispersion of the I' valley in narrow gap compound semiconductors, Here
m is the electron effective mass at the band bottom, and & ~ 1/E; is the non-parabolic
coefficient, E, being the band gap between the conduction and the valence bands.

Figure 1 shows the calculated drift velocity as a function of the electric field for n-doped
Gads (¢ = 0.613 eV, m = 0.067m, (m. is the free electron mass) and the impurity density
n; = electron density n = 1.0 x 10'® cm?) at the lattice temperature 7 = 77 K. The chain
line is obtained from Lei’s non-parabolic method {equations (1) and (2}), and the solid
line from balance equations (1) and (2} with the HW distribution function. The parameters
used in the calculations are typical values for GaAs. Scatterings due to charged impurities,
acoustic phonon-s and polar optic phonon-s are included in the calculation. As expected,
for this weak non-parabolic system (¢ = 0.613 eV), predictions by these two methods are
essentially the same except at the highest-electric-field region plotted in the figure.

Different predictions by Lei’s non-parabolic method and by balance equations (1) and
(2) with Hw distribution function show up when the electric field £ > 1 kV cm™! for
stronger non-parabolic Kane band (@ = 2.73 eV}, as is shown in figure 2, where we plot the
calculated drift velocity versus the electric field for an n-type InAs system (m = 0.022m,)
with electron density # = 1.0 x 10'® em™> at lattice temperature T = 300 K, using Lei’s
non-parabolic method (chain lines) and using balance equations with the Hw distribution
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Figure 1. Daft velocity vy against electric field E, Figure 2. Drift velocity vy against electric field E,
calculated from Lei’s non-parabolic methed (— —)  calculated from Lei’s non-parabolic method (— - —}
and from the balance equations (1) and (2) with the and from the balance equations (1) and (2) with the HwW
Hw distribution function (——) for an n-doped GaAs  distribution function (~—) for n-type InAs (Kane band:
system (Kane band: o = 0.613; m = 0.067m.) o = 2.73; m = 0.022m,) with the electron density
with the impusity density n; = electron density » = n = 1.0 x 10'8/cm® at a lattice temperature T = 77 K,
1.0 3 10" cm™2 at lattice temperature 7 = 77 K. assuming two different impurity densities.

function (solid lines). In the lower set of curves, which corresponds to an impurity density
n; = 1.0 x 10'® cm™ and impurity scattering dominates the momentum relaxation process,
the Hw function yields a lower drift velocity than predicted by Lei’s non-parabolic method.
This situation is changed when the impurity scattering is weakened and polar optic phonon
scattering dominates the momentum relaxation. To see this we deliberately assume a much
smaller impurity density (#; = 1.0 x 10'® cm™3) and keep the electron density unchanged,
such that at 7 = 300 K the phonon scattering is stronger than the impurity scattering, The
calculated result is plotted as the upper set of the curves in figure 2, showing that the HwW
distribution function yields a higher drift velocity than that of Lei’s non-parabolic method
when E > 1 kV cm™.,

7. Application to superlattice miniband transport

In this section we apply the above balance equations to discuss the miniband transport of a
superlattice with an electric field applied along its growth axis (z direction).
For the lowest miniband of the superlattice the electron energy spectrum can be written

2
e(k) = Ktk +2n- cos(k,d)] (28)-
2m 2

where m is the band effective mass, 4 is the superlattice period and A is the (lowest)
miniband width. We consider a family of n-type GaAs-based quantum well superlattices
having the same period d = 4.5 nm and well width 2 = 3.5 nm, but different miniband
widths ranging from 200 to 900 K. Scatterings due to charged impurities, bulk polar
optic phonon-s (Frohlich covpling with electrons) and acoustic phonon-s (deformation
potential and piezoelectric couplings with electrons) are taken into account (including static
screening). The elastic scattering strength is characterized by the magnitude of the low-
temperature (4.2 K} linear mobility £(0) in each case. The electron band effective mass and
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Figure 3. Drift velocity vg against electric field E in

superlattice vertical transport at a lattice temperature

T =300 K, calculated from the balance equations (1}

and (2) with the aw distrbution function {12) (—),

for a family of GaAs-based quantum well superlattices

A=00E  N=02x10¥/m? d=4.5 nm
a0)=10m%/Vs T=300K

o
=

Ly
(=]

— Lei's method

Drift velocity (km/s)
E-)
=2

200 K

0 5 w15 2 25 30 35 40
Electric field (kY fem)

Figure 4. Drift velocity vz against electric field E in

superlattice vertical transport at a lattice temperature

T = 300 K, calculated from Lei's non-parabolic

method, for the same family of GaAs-based guantum

well superlattices as described in figure 3.

of different miniband widths A ranging from 200-
900 K, but with same period d = 4.5 nm, well width
a = 3.5 nm, carier sheet density Ny = 0.2 x 1015 m™2
and low-temperature (4.2 X) linear mebility p(0) =
10 m? v-l 57l O, @ and A indicate the calculated
results from the T model for A = 900 K, 500 K and
200 K systems, respectively, of the family.

all the other material parameters are taken to be typical values of GaAs, e.g. m = 0.07n,
(m. being the free electron mass).

In figure 3 we plot the drift velocity vs as a function of the electric field E at the
Iattice temperature T = 300 K for this family of GaAs-based superlattices assuming a
carrier sheet density N, = 0.2 x 105 m~? and a low-temperature (4.2 K) linear mobility
©(0) = 1.0 m? V-1 571, The solid curves are calculated from balance equations (1) and
(2) with the Hw distribution function. Marked NDC is exhibited in all the systems (different
miniband widths) investigated. For comparison we plot in figure 4 the drift velocity versus
electric field, caleulated from Lei’s non-parabolic equations (1) and (2) for the same family
of superlattices. Also, we plot in figure 3 the calculated results ET model (section 5) for
selected systems as open circles, full circles and full triangles. Strangely enough, up to an
electric field already very deep in the negative-differential-mobility regime the predictions
of the ET model are almost identical with those obtained from balance equations (1) and
(2) with the Hw function. Compared with the predictions of Lei’s non-parabolic method,
equations (1) and (2) with the BW function yield a higher peak drift velocity and a much
steeper vy decrease at the NDC regime. This latter behaviour can be seen more clearly from
figure 5, where we plot the drift velocity vy normalized by its peak value v, as 2 function
of the dimensionless electric field E/E, (E. is the electric field at which the drift velocity
peaks). For comparison the Esaki—Tsu result [2, 18]

vy 2E/E,

% THEIER @

is also shown as open circles in this figure. The v4/v, versus E/E; behaviour predicted by
Lei’s non-parabolic method is somewhat similar to or less steep than that of equation (29).
At a given lattice temperature, the larger the miniband width, the steeper is the va/v, versus
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E/E, curve [18]. These predictions are in qualitative agreement with experiments [16, 171,
and have also been confirmed by a recent theoretical analysis based on three-dimensional
Boltzmann equation [9]. Up to now, a vs/v, versus E/E. behaviour descending at high
E/E, much more steeply than that of equation (2), as predicted by the balance equations
with the HW distribution function, has not yet been observed experimentaily nor yet been
obtained by other theories. Whether it will or not remains to be seen.

GaAs Soperlattice

Lef's method
A=200-200 K

.‘-"---
e R T
£ )
E" 06 —
r -
04 R
[ Esaki-Tsu

02 [8

#(0)=10m’/ Vs 4=900-200 K
N;=0.2x10%/m? with HW-fun,

5.

0 I 2 3 4 5
E/E.
Figure 5. Drift velocity vy normalized by its peak value v, shown as a function of the
dimensionless electric field EfE; (E. is the electric field at which the drift velocity peaks)
for the same family of GaAs-based quantum we]l superlattices as described in figure 3, ——,
predictions of balance equations (1} and (2) with the Hw distribution function (12); — - —,
predictions from Lei's non-parabolic method; O, results of the Esaki~Tsu theory, equation (27).

8. Conclusion

From the analysis based on the Boltzmann transport equation, we have demonstrated that
the conventional form of momentum balance equation (10} is generally not a valid equation
for an energy band (e.g. a superlattice miniband) whose width (in at least one direction of
k-space) is comparable with the ET T.. A compact moment equation, which is valid for a
general energy band and represents an effective momentum balance of the carrier system,
can be derived as the moment equation of the Boltzmann equation by choosing the moment
operator to be the velocity function (k) = Ve(k). This eguation turns out to be of the
same form as the acceleration balance equation (1) in Lei’s non-parabolic method with the
original ‘distribution function’ f(e(k — p4)) replaced by a general prescribed distribution
function f(k) which is a continuous function of & in the periodic zone scheme. Specifically,
putting the HW distribution function f, (k) into the balance equations (1) and (2), we have
another balance equation theory, which, aithough being equivalent to Lei’s non-parabolic
method at low fields, represents a different method. On applying these two balance equation
thearies to non-parabolic Kane bands and superlattice minibands we find that the significant
difference between Lei’s non-parabolic method and the balance equations (1) and (2) with
the HW distribution function is that the Jatter predicts a normalized vg/vp versus E/E, curve
falling down at high E/E. much more steeply than predicted by the former. So far the
available experimental and theoretical results seem to favour the former. Nevertheless, more
accurate data are desirable for a definite judgment.
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