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AbstracL The conventional way of developing a momenhlm balance equation by generating the 
ht-order moment (with the mOmenNm k as the moment operator) f” the Boltvnaon transport 
equation relies on the fact thaf the dishiiution function f (k) approaches zero rapidly enough 
that the integral sV(k) f(k) d3k is negligible This is not valid for an energy band (e.& a 
superlanice miniband) whose width (in at least one direction of the k-space) is cnmparable with 
bT. (Te is the electron temp” ) .  It is demonshated by chwsing the moment operator 
to be the veloeiw function v(k) = Vs(k)  a compact momenf equation, which is valid for a 
genesal energy band and r e p a n t s  an effective momentum balance of the canier system, cm 
be derived for the distribution function f (k) which is a wnl!nuous function of k in the periodic 
zone scheme. The effective momentum balance equation and the energy balance equation thus 
obtained share the same f d  expressions as the acceleration and energy-balance equations 
in lei’s non-parabolic method These equations, with the distribution function suggested by 
Huang and Wu, am applied to the discussion of high electric field rmarport of electrons in non- 
parabolic h e  bands and superlattice minibands. The results are compared with the d i c t i o n s  
f” Lei’s non-parablic method and from a carrier temprrahlre model. 

1. Introduction 

The Lei-Ting [l] balance-equation approach to hot-electron transport in semiconductors, 
which was proposed 10 years ago, has been successfully applied to a variety of transport 
problems in different types of system. This theory is based on the separation of the centre 
of m m  of the system from the relative motion of electrons in the presence of the electric 
field. Such a separation is valid only for electrons moving in a parabolic band or for systems 
which can be described by a constant effective mass. Recent interest in a semi-analytical and 
realistic theory capable of dealing with superlattice miniband transport [21 has stimulated 
many investigations on extending the Lei-Ting balance-equation methcd to general energy 
band structures. Several extensions have been proposed recently with different results. 

Magnns etal 131 suggested that the exact set of the original Lei-Ting balance equations 
as given in [l] can still be used to describe transport in a general energy band as long as the 
true (rather than the parabolic) energy dispersion relation is taken into account in the electron 
densitydensity correlation function. They have applied these equations to the investigation 
of the electron transport in GaAdAlGaAs heterojunctions with non-parabolicity (Kane typ) 
included [4]. 
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The present author [5] extended the Lei-Tig theory to an arbitrw energy band. His 
nonparabolic method describes the driftiig Blwh electrons under the influence of a uniform 
electric field by the use of two parameters: the centre-of-mass momentum and the electron 
temperature. The balance equations comprise an equation of motion of the centre of mass, 
a mass-variable single particle under the influence of the electric field, and an equation of 
energy balance between the power supplied by the electric field and energy loss rate of the 
electron system. These equations have been applied to superlattice miniband transport [6], 
yielding an Esaki-Tsu negative differential conductivity (NDC), reproducing the experimental 
peak drift velocity up and the threshold electric field as functions of the miniband width 
[7], and accounting for the low-temperature saturation of up [SI. The predictions of this 
non-parabolic method have also been conlirmed by a recent calculation based on the three 
dimensional B o l t z ” I  equation [91. 

Recently, Huang and Wu (w) 1101 proposed a set of balance equations for electron 
transport in a general energy band under the influence of an electric field, in which the 
momentum and energy losses are to be evaluated with a distribution function which is 
obtained by maximizing the system entropy, subject to a given total number of electrons 
and a given total energy and, in addition, subject to a restricted condition that the average 
drift velocity is also prescribed. Although these equations are not capable of reproducing the 
well established Esak-Bu negative differential mobility for superlattice miniband transport 
[ll], the distribution function produced by HW is very attractive and plausible. 

In this paper we point out that, from the viewpoint of the Boltzmann equation, the 
original Lei-Ting momentum balance equation (i.e. the momentum balance suggested by 
Magnus et al [3]) and the momentum balance equation suggested by w [ 101 are generally 
not valid for narrow energy bands. A balance equation, which is valid for a general energy 
band and represents an effective momentum balance, can be derived by taking an appropriate 
‘moment’ from the Boltzmann equation with a prescribed distribution function. The effective 
momentum and energy balance equations thus obtained share the same formal expressions 
as the acceleration and energy balance equations in Lei‘s non-parabolic method, but with the 
original ‘distribution function’ replaced by the prescribed distribution function. The derived 
equations with the distribution function suggested by HW [lo] are applied to the discussion of 
hot-carrier transport in non-parabolic Kane bands and in superlattice minibands. The results 
are compared with those from Lei’s non-parabolic method and from a carrier temperature. 
model. 

This paper is organized as follows. For the readers’ convenience and to facilitate 
comparison we rewrite the major equations and formulae from Lei‘s non-parabolic method 
and from the paper of w in sections 2 and 3 respectively. In section 4 we discuss in 
detail the derivation of balance equations from the Boltzmann equation for a general energy 
band. In section 5 we propose an electron temperature (ET) model for a general energy 
band system. These balance equation theories and models are applied to non-parabolic 
Kane bands in section 6, and to superlattice minibands in section 7, before we conclude in 
section 8. 

2. Lei’s non-parabolic method 

Lei’s non-parabolic method deals with many interacting Bloch electrons which are drifting 
under the influence of a uniform electric field. It assumes that strong intercarrier couplings 
promote rapid thermalization of electrons in a reference frame in which the total momentum 
of carriers vanishes. This enables us to describe these drifting Blocb electrons under the 
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influence of a uniform electric field E by the use of two p h e t e r s ,  namely the centre-of- 
mass momentum p d  = Npd (N is the total number of the electrons) and the ET T.. They 
are included in the initial density matrix, which represents a themquilibriumtype state 
and is thought to be close to the final transport state that we are trying to find. Balance 
equations are derived by evaluating the statistical averages of the rates of changes in the 
centre-of-mass velocity and the electron energy operators. To leadiig order of the scattering 
potentials this yields the following acceleration and energy balance equations for the steady 
transport state: 

e E . K + A = O  

e z - v d -  w = 0. 

Here A = Ai + A ,  is the frictional acceleration due to impurities (Ai) and phonon-s (Ap), 
and W is the electron energy loss rate (per carrier) due to phonon-s. The centre-of-mass 
velocity or the average drift velocity Vd of the carriers, is given by 

where v(k)  V&(k)  is the velocity function, and f(&) = l/[exp(&-p)/T,+l] stands for 
the Fermi function at the temperature T, with j~ the chemical potential to be determined by 
the total number of carriers: N = 2 Ck f(&(k)).  Equation (1) is the equation of motion of 
the centre of mass, which is a mass-variable single particle with an inverse effective mass 
tensor K/N, given by 

The impurity-induced frictional acceleration Ai, the phonon-induced frictional acceleration 
Ap, and the energy transfer rate W from the electron system to the phonon system have the 
following form [SI: 
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and 

a(q, 1) = M ( q ,  .\,/e(q, d k  -Pd) - E(k + Q -?'a)) (9) 

are the dynamically screened impurity scattering potential and the dynamically screened 
electron-phonon matrix element, u(q) is the bare impurity potential and M ( q ,  A) is the 
(unscreened) coupling matrix element between the electron and I th  branch phonon in the 
plane-wave representation. e(q, 0)  is the RPA dielectric function of the electron system. 
So far, in most numerical investigations, only the static screening approximation has been 
used: i ( q )  - u(q)/e(q, 0) and 

The acceleration balance equation (1) and the energy balance equation (2) constitute 
the basis of the method for steady-state transport. These equations reduce to the original 
Lei-Ting balance equations in the parabolic limit. 

A) - W q ,  A)/& 0). 

3. Huang-Wu distribution fundion 

Recently, HW [ 101 proposed a set of balance equations for electron transport in a general 
energy band under the influence of an electric field. It takes the following form in the 
stationary conduction: 

NeE = momentum loss by scattering (with phonon-s and impurities) (10) 

NeE . Vd = energy loss by scattering (with phonon-s). (11) 

Here the momentum loss and energy loss are calculated with a distribution function 

.m) = i / m m E ( l c )  -P,. v m  - PIZI + in (12) 

which is obtained by Hw [lo] as a distribution function of the electron gas by maximizing 
its entropy, subject to a given total number of electmns and a given total energy and, in 
addition, subject to the restricted condition that the average drift velocity is also prescribed. 
The drift velocity Wd is given by 

and the parameters ,& p and p ,  are determined by the total number of carriers given by 

together with the momentum and energy balance equations (10) and (11). I shall refer to 
the function &(k) (equation (12)) as the Hw distribution function. 

As has been pointed out by the present author [ll],  the dishibution function obtained in 
this way apparently depends on the prescribed condition that one chooses. So far we have no 
specific reason why one should maximize the entmpy within the constant-velocity surface 
of the phase space. For instance, one can maximize the entropy subject to a prescribed 
average momentum instead of average velocity. This gives a distribution function of the 
form 

(15) fp(k) = " w w  - wK -P(W - PI] + in 
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where p, p and U, are parameters, and p(k)  stands for the momentum of an electron 
in the k-state, which is a periodic function of IC and equals k within the Brillouin zone 
(Bz). We can also express the momentum and energy balance equations (10) and (11) and 
equations (13) and (14) in terms of the distribution function fp(k). The resultant set of 
balance equations is in fact somewhat similar to those suggested by Magnus et al [3]. The 
main difference is that in the latter case vd is taken to be equal to vr rather than related to 
v, by equation (13). 

Although equations (IO) and (1 1) themselves leave some ambiguity on how to evaluate 
the the ‘momentum loss by scattering’, the reasonable way of calculating this quantity should 
be by means of the Fermi golden rule together with the electron distribution or, equivalently, 
the collision integral term of the Boltzmann equation. In this way the ‘momentum loss by 
scaftering’ turns out to be -Nf given by equation (21) of the next section. Unfortunately, 
equations thus obtained are unable to reproduce the well established Esaki-Tsu negative 
differential mobility for superlattice miniband transport [l 11, irrespective of which of the 
functions fv(k) or & ( I C )  is used in calculating the momentum and energy losses. Therefore, 
these equations cannot be a good description for high-field trampor& at least for this type of 
strongly non-parabolic band. It should be noted, however, that this conclusion is not related 
to the form of the distribution function used. 

In order to see what is missed in these equations we shall, in the next section, investigate 
the moment equations from the Boltzmann transport equation for a general energy band. 

4. Moment equations of the Boltzmann equation for a general energy band 

Consider electrons moving within a single energy band. The electron Bloch state can be 
described by the lattice wavevector k within a Brillouin zone BZ. In the periodic zone 
scheme, k and kf G (G is a reciprocal-lattice vector) represent the same electron state and 
the energy dispersion E @ )  is a periodic function: 

&(k) = E(k + G).  (16) 

The steady-state Boltzmann equation for a spatially homogeneous system under the 
influence of a uniform electric field is written as 

Here f ( k )  is the distribution function and (af/at), stands for the collision term. 
A general moment equation is obtained by multiplying equation (17) by an arbitrary 

scalar or vector function g(k) (moment operator) and summing over all the electron states 
or integrating over k in a BZ to give 

The second term on the left-hand side is a closed area integration over the boundary surface 
s s z  Of the B Z  

Taking g(k) = k, we have 



9194 XLLei 

The first term on the left-hand side gives 

The right-hand side is exactly the momentum loss rate of the electron system due to impurity 
and phonon scatterings, -F = -Nf, which can be written in the form 

x b(Q,A/T)[f(k) - f ( k  + n)l - f (k)[ l  - f ( k  + d1). (21) 

In the case of a parabolic band for which &(IC) = k2/2m and the Bz boundary is 
thought to be at lkl+ 00, the second term on the left-hand-side of equation (19) vanishes 
owing to the exponential decay of the Fermi function at large Ikl. Equation,(l9) reduces 
to NeE = -F, i.e. the momentum balance equation suggested by Hw if the distribution 
function f,.(k) (equation (12)) is used for f(k). For a realistic wide-band system such 
a conclusion may still be approximately true if the effective band width is much larger 
than the effective temperature parameter in the distribution function. Even in this case, 
however, one has to exercise caution in high-field transport, since the elecfxon temperature 
can be very high at high electric fields such that the the second term on the left-hand side 
of equation (19) may not be negligible. 

For a narrow band or an energy band which is narrow in one or two directions in 
the k-space, the second term on the left-hand side of equation (19) can be as large 
as the first term. Consider, for example, a superlattice miniband given by ~ ( k )  = 
(k: + k;)/2m + (A/2)[1 - cos(k,d)] (d is the superlattice period and A is the miniband 
width) with an electric field applied along the superlattice growth axis (z direction). In the 
case of a Maxwell-Boltzmann distribution function f(k) - exp[-s(k)/T], the ratio of the 
second term to the first term of the z component of equation (19) can be shown to he (I&) 
is the zeroth-order BesseI function) 

exp(-A /ZT) A - 1 for small - 
Io(A/ZT) ZT 

and thus the second term on the left-hand-side of equation (19) is not negligible. Therefore, 
from the viewpoint of the moment equation of the Boltzmann equation, the original Lei-Ting 
momentum balance equation (i.e. the momentum balance equation suggested by Magnus et 
aI [3] and the momentum balance equation suggested by HW [lo], are generally not effective 
for narrow-band systems, since the above surface integration term has been neglected in 
these equations. 

To obtain, from the Boltzmann equation, a compact moment equation corresponding 
to a momentum balance, we choose the moment operator to be the velocity function: 
g(k) = w(k) E V&(IC). In the periodic zone scheme, the velocity function, as the energy 
function &(IC), is a periodic and continuous function of k. Thus, if the distribution function 
f ( k )  is also a periodic and continuous function of IC, w(k)f(k) takes the same value at 
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two points separated by a reciprocal-lattice. vector on opposite sides of the BZ boundary and 
the closed area integration over the Bz surface in equation (18) vanishes: 

i m d s  v(k)f(k) = 0. (22) 

The moment equation (18) then reduces to 

eE . K = -A (23) 

with 

(24 
2 K = 7 x V V ~ ( k ) f ( k )  

k 

and 

2 A = - ("> v(k). 
N k  at e 

This is exactly the acceleration balance equation (1) in Lei's non-parabolic method. In fact, 
in the presence of impurity and phonon- scatterings the frictional acceleration A is given 
by the sum of Ai and A,, having the same expressions as equations (5) and (6) (with 
static screened i (q )  and M ( q ,  A), except that function f (&(k - pd)) there is replaced by 
a general dishibution function f(k) satisfying the above mentioned condition; it changes 
continuously with changing k in the periodic zone scheme. 

The requirement that the distribution function must be a continuous function of k 
excludes the possibility of using fp(k) (equation (15)) as a prescribed distribution function in 
obtaining such a moment equation, since the momentum function p ( k )  is not continuous at 
the BZ boundary. However, both the function f ( ~ ( k  -pd)) and the Huang-Wu distribution 
function f&) are such functions and can be used in this acceleration balance equation. 

In the limit of a parabolic band both Lei's non-parabolic equations (1) and (2) and the 
balance equations (1) and (2) with the HW distribution function fv(k) reduce to the original 
Lei-Ting balance equations [5]. On the other hand, comparing function f ( ~ ( k  - pd)) with 
the function f , (k)  (equation (12)). we can see that they are equivalent at small pd (small 
pv).  Therefore, the balance equations (1) and (2) with the HW dis'uibution function yield 
exactly the same predictions as those of Lei's non-parabolic methods for arbitrary energy 
bands in the case of weak electric field transport. Different results from these two sets of 
balance equations show up only for strong elec'uic field transport in strongly non-parabolic 
bands. 

In investigating the streaming terms of a hydrodynamic transport model, Woolard et a1 
[12] pointed out that the use of the velocity function g(k )  = v ( k )  for the moment operator 
leads to a significant improvement over the use of the momentum function g(k)  = k in 
the case of a non-parabolic Kane band. They arrived at this conclusion primarily on the 
basis of the fact that the resultant equation with v ( k )  can be manipulated more easily and 
a simplifying approximation can be seen more clearly. The present analysis shows that the 
more fundamental reason for this is the non-zero surface integration term inherent in the 
k-induced equation (19) for a realistic energy band of finite width, which is always the case. 

The ambiguity left by the form of equation (10) may allow one to explain that 'the 
momentum loss by scattering' is obtained by calculating the acceleration A and multiplying 
the average effective mass (K/N)-', as defined by equations (24) and (25). Then, 
equation (10) is simply identical with equation (2). 
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5. Electron temperature model 

The ET model [13-151 has been a simple method for investigating hot-carrier transport in the 
literature, which is especially popular in the qualitative analysis of the experimental data. 
Basically the ET model assumes that the only effect of a strong elechic field is to raise the 
ET Te. If the weak-electric-field mobility of the electron system at the lattice temperature 
T is po(T), the electron mobility io a strong electric field E is given by po(T,), where the 
m Te is determined by an energy balance such that the energy supplied per unit time by 
the electric field equals the electron energy loss W and the latter is to be. calculated using 
a weak-field distribution function but replacing the lattice temperature T by Te. 

This ET model can be easily extended to a general energy band, as long as equation (1) 
is used to calculate the weak-field mobility po(T). Note that for this purpose we need only 
a small p d  limit for function f(k - p d )  or small p ,  limit for function f&); thus there is 
no difference using Lei's balance equations (1) and (2). or using equations (1) and (2) with 
the Hw distribution function. The energy balance equation for determining T, is 

epo(Te)E2 - w(T,) = 0. (26) 

Here the drift velocity is assumed to be in the same direction as the electric field such that 
vd bO(T)E. 

6. Application to Kane bands 

To see the difference between Lei's non-parabolic equations (1) and (2) and the balance 
equations (1) and (2) with the HW distribution function, we first applied them to analyse 
electron transport in a non-parabolic Kane band with the energy dispersion ~ ( k )  given by 

This Kane k . p  model is widely used in the literature to describe the non-parabolicity of the 
electron energy dispersion of the r valley in narrow gap compound semiconductors. Here 
m is the electron effective mass at the band bottom, and or - I/Eg is the non-parabolic 
coefficient, E, being the band gap between the conduction and the valence bands. 

Figure 1 shows the calculated drift velocity as a function of the electric field for n-doped 
GaAs (a = 0.613 eV, m = 0.067me (me is the free electron mass) and the impurity density 
ni = electron density n = 1.0 x lo'* cm3) at the lattice temperature T = 77 K. The chain 
line is obtained from Lei's non-parabolic method (equations (1) and (Z)), and the solid 
line ftom balance equations (1) and (2) with the HW distribution function. The parameters 
used in the calculations are typical values for GaAs. Scatterings due to charged impurities, 
acoustic phonon-s and polar optic phonon-s are included in the calculation. As expected, 
for this weak non-parabolic system (or = 0.613 eV), predictions by these two methods are 
essentially the same except at the highest-elechic-field region plotted in the figure. 

Different predictions by Lei's non-parabolic method and by balance equations (1) and 
(2) with Hw distribution function show up when the electric field E > 1 kV cm-I for 
stronger non-parabolic Kane band (a = 2.73 eV), as is shown in figure 2, where we plot the 
calculated drift velocity versus the electric field for an n-type InAs system (m = 0.022me) 
with electron density n = 1.0 x IO'* at lattice temperature T = 300 K, using Lei's 
non-parabolic method (chain lines) and using balance equations with the Hw distribution 
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7.0 

Kane band (GaAs):a=0.6S/eV ; Kane band (GaAs):a=0.6S/eV 

0 

-with Hw-fue 

0.0 
0.0 05 1.0 I5 20 U 3.0 

Electric Field (!+'/an) 
0.0 t/ ' I 

0.0 05 1.0 I5 20 U 3.0 
Electric Field (!+'/an) 

- 1 Kane band ( Ids) :  a=273/eV 
2.. n=1x1OWm3 T=3M)K 

ii 

Figure 1. Drift velocity vd against electric field E, Figure 2. Drift velocity vd against dechic field E, 
calculated from Lei's non-parabolic method (- . -) oLculated from Lei's non-parabolie method (- . -) 
and from the balance equations (1) and (2) with the and from the balance equations (1) and (2) with the HW 
HW distribution fundion (-) for an n-doped GaAs disbibution function (-) for n-type InAs (Kaae band 
system (Kane band U = 0.613: m = O.O67m,) a = 2.73: m = 0.022m.) with the electron density 
with the impuriIy density ni = electron densiIy n = n = 1.0 x lOLS/cm3 at a lattice temperarwe T = 77 K, 
1.0 x 1Ol8 assuming (WO &rent impurity densities. at lattice temperature T = 77 K. 

function (solid lines). In the lower set of curves, which corresponds to an impurity density 
ni = 1.0 x 10l8 cnr3 and impurity scattering dominates the momentum relaxation process, 
the HW function yields a lower drift velocity than predicted by Lei's non-parabolic method. 
This situation is changed when the impurity scattering is weakened and polar optic phonon 
scattering dominates the momentum relaxation. To see this we deliberately assume a much 
smaller impurity density (ni = 1.0 x 10l6 cm") and keep the electron density unchanged, 
such that at T = 300 K the phonon scattering is stronger than the impurity scattering. The 
calculated result is plotted as the upper set of the curves in figure 2, showing that the HW 
distribution function yields a higher drift velocity than that of Lei's non-parabolic method 
when E z 1 kV cm-'. 

7. Application to superlattice miniband transport 

In this section we apply the above balance equations to discuss the miniband transport of a 
superlattice with an electric field applied along its growth axis (z direction). 

For the lowest miniband of the superlattice the electron energy spectrum can be written 

e + k ;  A 
2m 2 

&(k) = - + -[1 - c~~(k ,d) ]  

where m is the band effective mass, d is the superlattice period and A is the (lowest) 
miniband width. We consider a family of n-type GaAs-based quantum well superlattices 
having the same period d = 4.5 nm and well width a = 3.5 nm, but different miniband 
widths ranging from 200 to 900 K. Scatterings due to charged impurities, bulk polar 
optic phonon-s (Frohlich coupling with electrons) and acoustic phonon-s (deformation 
potential and piezoelectric couplings with electrons) are taken into account (including static 
screening). The elastic scattering strength is characterized by the magnitude of the low- 
temperature (4.2 K) hear mobility p(0) in each case. The electron band effective mass and 
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Figure 3. Drift velocity ud against electric field E in 
superlattice vertical transport at a lattice temperature 
T = 300 K, calculated from the balance equations (I)  
and (2) with the HW distribution function (12) (-), 
for a family of GaAs-based quantum well superlattices 
of different miniband widths A ranging from 2W 
900 K. but with same period d = 4 5  nm, well width 
n = 3.5 om. &er sheet density Ns = 0.2 x 10" m-' 
and low-tempenrure (4.2 K) linear mobility p(0) = 
1.0 m' V-' s-': 0, 0 and A indicate the calcnlated 
results from the ET model for A = 900 K, 500 K and 
200 K systems, respectively, of the family. 

. I . . . . .  'Qv 5 10 IS 20 25 30 35 J O  
Eleclic field (kV/cm) 

F l p  4. Drift velociry ud against electric field E in 
superlattice vertical transport at a lattice temperature 
T = 300 K. calculated from Lei's non-parabolic 
method, for the same family of GaAs-based quantum 
well superlaaices as desaibed in B p  3. 

all the other material parameters are taken to be typical values of GaAs, e.g. m = 0.07m. 
(m, being the free electron mass). 

In figure 3 we plot the drift velocity ud as a function of the electric field E at the 
lattice temperature T = 300 K for this family of GaAs-based superlattices assuming a 
carrier sheet density N, = 0.2 x 1015 m-' and a low-temperature (4.2 K) linear mobility 
p(0)  = 1.0 mz V-' s-'. The solid curves are calculated from balance equations (1) and 
(2) with the Hw distribution function. Marked NDC is exhibited in all the systems (different 
miniband widths) investigated. For comparison we plot in figure 4 the drift velocity versus 
electric field, calculated from Lei's non-parabolic equations (1) and (2) for the same family 
of superlattices. Also, we plot in figure 3 the cdcdated results ET model (section 5) for 
selected systems as open circles, full circles and full triangles. Strangely enough, up to an 
electric field already very deep in the negativedifferential-mobility regime the predictions 
of the ET model ace almost identical with those obtained from balance equations (1) and 
(2) with the HW function. Compared with the predictions of Lei's non-parabolic method, 
equations (1) and (2) with the HW function yield a higher peak drift velocity and a much 
steeper ud decrease at the NDC regime. This latter behaviour can be seen more clearly from 
figure 5, where we plot the drift velocity Vd normalized by its peak value vp as a function 
of the dimensionless electric field E / E c  (Ec is the electric field at which the drift velocity 
peaks). For comparison the Esaki-Tsu result [2,18] 

is also shown as open circles in this figure. The v & ~ ~  versus E / E ,  behaviour predicted by 
Lei's non-parabolic method is somewhat similar to or less steep than that of equation (29). 
At a given lattice temperature, the larger the miniband width, the steeper is the U& versus 
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E / E c  curve 1181. These predictions are in qualitative agreement with experiments [16,17], 
and have also been conlinned by a recent theoretical analysis based on three-dimensional 
Boltzmann equation [9]. Up to now, a ud/up versus E / E .  behaviour descending at high 
E/Ec  much more steeply than that of equation (2), as predicted by the balance equations 
with the HW distribution function, has not yet been observed experimentally nor yet been 
obtained by other theories. Whether it will or not remains to be seen. 

GaAs Superlattice I 

I 
0 1 2 3 4 5 

0.06' " " '  " '  

E/Ec 
Figure 5. DriI? velocity ud normalized by its peak value up shown as a function of the 
dinmwionless electric field E / E .  (E. is the electdc field Bt which thp drift velocity peaks) 
for the fnme family of GaAs-based q u a "  well superlattices as described in figure 3. -, 
predictions of balance equations (1) and (2) with the AH dimiburion fundon (12); - . -, 
prediciioos from Lei's non-parabolic method: 0, results of the Esaki-Tsu theory, equation (27). 

8. Conclusion 

From the analysis based on the Boltrmann transport equation, we have demonstrated that 
the conventional form of momentum balance equation (10) is generally not a valid equation 
for an energy band (e.g. a superlattice miniband) whose width (in at least one direction of 
k-space) is comparable with the ET T,. A compact moment equation, which is valid for a 
general energy hand and represents an effective momentum balance of the carrier system, 
can be derived as the moment equation of the Boltzmann equation hy choosing the moment 
operator to be the velocity function v(k)  V E ( ~ ) .  This equation turns out to be of the 
same form as the acceleration balance equation (1) in Lei's non-parabolic method with the 
original 'distribution function' f (&(k  - pd)) replaced by a general prescribed distribution 
funcfion f(k) which is a continuous function of k in the periodic zone scheme. Specifically, 
putting the Hw distribution function f,(k) into the balance equations (1) and (2), we have 
another balance equation theory, which, although being equivalent to Lei's non-parabolic 
method at low fields, represents a different method. On applying these two balance equation 
theories to non-parabolic Kane hands and superlattice minibands we 6nd that the significant 
difference between Lei's non-parabolic method and the balance equations (1) and (2) with 
the HW distribution function is that the latter predicts a normalized versus E/Ec  curve 
falling down at high E/Ec  much more steeply than predicted by the former. So far the 
available experimental and theoretical results seem to favour the former. Nevertheless, more 
accurate data are desirable for a definite judgment. 
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